
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR’S THESIS

Martin Klučka

User interface and failure detection for support of
multi-MAV experiments

Department of Cybernetics

Thesis supervisor: Dr. Martin Saska

Prohlášeńı autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických princip̊u
při př́ıpravě vysokoškolských závěrečných praćı.

V Praze dne............................. ...

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Martin K l u č k a

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: User Interface and Failure Detection for Support of Multi-MAV
 Experiments

 Guidelines:
The aim of the thesis is to design and implement a user interface that facilitates experiments with
a swarm of simultaneously flying Micro Aerial Vehicles (MAVs). The interface should enable to commit
plans of movements for particular MAVs, to save and subsequently analyse telemetric data, and to detect
and visualize failures of MAV subsystems.
Student designs and implements:
1. tool for logging of telemetric data onboard of MAV using OpenLog module,
2. user interface that enables to send commands into MAVs, to visualize telemetric data, and to highlight
 detected failures,
3. mechanism for saving telemetric data, which are selected by operator, and its subsequent analysis,and
4. algorithm for automatic detection of failures based on analysis of telemetric data.

Bibliography/Sources:
[1] Heredia, G. - Ollero, A. - Bejar, M. - Mahtani, R.: Sensor and actuator fault detection in small
 autonomous helicopters, Mechatronics, Volume 18, Issue 2, March 2008.
[2] Saska, M. - Chudoba, J. - Přeučil, L. - Thomas, J. - Loianno, G. - et al.: Autonomous Deployment
 of Swarms of Micro-Aerial Vehicles in Cooperative Surveillance. In Proceedings of 2014 International
 Conference on Unmanned Aircraft Systems (ICUAS).
[3] Cork, L. - Walker, R.: Sensor Fault Detection for UAVs using a Nonlinear Dynamic Model and
 the IMM-UKF Algorithm, Information, Decision and Control - IDC '07, 2007.
[4] Sanchez, S. - Perhinschi, M. - Moncayo, H. - et al.: In-Flight Actuator Failure Detection and
 Identification for a Reduced Size UAV Using the Artificial Immune System Approach, AIAA Guidance,
 Navigation, and Control Conference, 2009.

Bachelor Project Supervisor: Ing. Martin Saska, Dr. rer. nat.

Valid until: the end of the summer semester of academic year 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 23, 2015

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Martin K l u č k a

Studijní program: Kybernetika a robotika (bakalářský)

Obor: Robotika

Název tématu: Uživatelské rozhraní a automatická detekce poruch pro podporu
 experimentů s více helikoptérami

Pokyny pro vypracování:
Cílem práce je navrhnout a implementovat uživatelské rozhraní, které usnadní experimentální práci
se skupinou současně letících helikoptér. Systém umožní jednoduché povelování skupiny i jednotlivých
jedinců, ukládání a následnou analýzu telemetrických dat a rychlou detekci a vizualizaci poruch některého
ze subsystémů letounů.
Student navrhne a implementuje:
1. nástroj pro rychlé logování telemetrických dat přímo na palubě letounu s využitím OpenLog modulu,
2. uživatelské rozhraní umožňující povelovat jednotlivé helikoptéry, zobrazovat online telemetrická data
 a vizualizovat detekované poruchy,
3. mechanismus pro ukládání vybraných telemetrických dat a jejich následnou analýzu a
4. algoritmus pro automatickou detekci poruch na základě analýzy telemetrických dat.

Seznam odborné literatury:
[1] Heredia, G. - Ollero, A. - Bejar, M. - Mahtani, R.: Sensor and actuator fault detection in small
 autonomous helicopters, Mechatronics, Volume 18, Issue 2, March 2008.
[2] Saska, M. - Chudoba, J. - Přeučil, L. - Thomas, J. - Loianno, G. - et al.: Autonomous Deployment
 of Swarms of Micro-Aerial Vehicles in Cooperative Surveillance. In Proceedings of 2014 International
 Conference on Unmanned Aircraft Systems (ICUAS).
[3] Cork, L. - Walker, R.: Sensor Fault Detection for UAVs using a Nonlinear Dynamic Model and
 the IMM-UKF Algorithm, Information, Decision and Control - IDC '07, 2007.
[4] Sanchez, S. - Perhinschi, M. - Moncayo, H. - et al.: In-Flight Actuator Failure Detection and
 Identification for a Reduced Size UAV Using the Artificial Immune System Approach, AIAA Guidance,
 Navigation, and Control Conference, 2009.

Vedoucí bakalářské práce: Ing. Martin Saska, Dr. rer. nat.

Platnost zadání: do konce letního semestru 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 23. 1. 2015

Acknowledgements

First of all, I would like to thank the supervisor of this thesis, Dr. Martin Saska for
his guidance and help throughout this project. Furthermore I thank my family for their
support during my studies. I would also like to thank Tomáš Báča for valuable comments
and advices.

Abstract
The aim of the thesis is to design and implement a graphical user interface
(GUI). The GUI facilitates experiments with a swarm of simultaneously
flying Micro Aerial Vehicles (MAVs). The GUI is able to send commands
to one or more MAVs at same time. The GUI can log data from MAVs to
the file. The main goal of this thesis is a failure detection of controllers.
The GUI is able to detect and visualize failures of the MAV controllers.
The failure detection was simulated and experiments was designed to
verify functionality of detecting errors.

Keywords: micro aerial vehicles, graphical user interface, failure detec-
tion

Abstrakt
Ćılem práce je navrhnout a implementovat grafické uživatelské rozhrańı,
které usnadńı experimentálńı práci se skupinou současně let́ıćıch he-
likoptér. Systém umožńı jednoduché povelováńı skupiny i jednotlivých
jedinc̊u a ukládáńı telemetrických dat do souboru. Hlavńım ćılem práce
je detekce chyb, které budou zp̊usobené regulátory helikoptér. Grafické
uživatelské rozhrańı bude umět odhalit chyby a násnedně je zobrazit.
Detekce chyb byla odsimulována a naslědně byly provedeny experimenty
pro ověřeńı funkčnosti detekce chyb.

Kĺıčová slova: malé bezpilotńı letouny, grafické uživatelské prostřed́ı,
detekce chyb

CONTENTS

Contents

List of Figures iii

1 Introduction 1

2 Related work 2

3 Hardware 3

3.1 Control board . 3

3.1.1 ATxMega . 3

3.1.2 ARM . 3

3.1.3 Open Log . 4

3.2 Modules . 4

3.2.1 PX4Flow . 4

3.2.2 Camera module . 5

3.3 Controllers . 5

3.4 XBee . 5

3.4.1 Communication via XBee . 6

4 Logging 9

4.1 Onboard logging via SparkFun OpenLog 9

4.1.1 Commands . 9

4.1.2 Basic commands . 9

4.1.3 System settings . 10

4.1.4 Implementation . 10

4.2 Telemetry logging using the GUI . 11

5 Failure detection 12

5.1 Model of MAV . 12

5.1.1 Altitude model . 12

5.1.2 Attitude model . 13

5.2 Simulation of a real MAV . 14

5.2.1 Signal noise . 14

5.2.2 Examples of MAV simulation . 15

5.3 Failure detection system . 16

5.3.1 Implementation of Failure detection 16

5.4 Data analysis from failure detection modeled system 17

5.5 Simulations . 19

5.5.1 Systems of MAV simulation and failure detection 19

5.5.2 Artificially created error . 20

i

CONTENTS

6 Graphical user interface 22
6.1 QT framework . 22
6.2 MAVs GUI window . 22

6.2.1 Communication thread . 23
6.2.2 The possibility of setting a number of graphs 23

6.3 QCustomPlot . 24
6.4 Graphs . 24

6.4.1 QCheckBoxes for Graphs . 24
6.4.2 Graph legend . 24

6.5 Connecting GUI with MAV . 25
6.6 Commands for control the MAV . 26
6.7 States of MAV . 26
6.8 Logging telemetry . 27
6.9 Failure detection . 28

6.9.1 Representation of failure detection 28

7 Experiments 30
7.1 Experiment with two MAVs . 30
7.2 Failure detection on a real MAV . 30

7.2.1 Attitude system . 30
7.2.2 Altitude system . 31

7.3 Summary . 32

8 Conclusion 34

9 Bibliography 35

Appendix A CD Content 37

Appendix B List of abbreviations 38

Appendix C The MAV window 40

Appendix D The Failure detection 41

ii

LIST OF FIGURES

List of Figures

1 MAV demonstration . 1
2 Control board v.2 . 3
3 SparkFun OpenLog [27] . 4
4 PX4Flow module . 4
5 Gumstix camera module . 5
6 Example of circular pattern . 5
7 XBee Pro 2SB . 6
8 Logging options in GUI . 11
9 Example of a noise for Normal distribution N(0,0.08) 15
10 Example of the altitude modeled system 15
11 Example of the attitude modeled system 16
12 Example of errors in simulation of altitude system with artificial error . . . 17
13 Example of errors in simulation of attitude system with artificial error . . . 17
14 Example of errors in simulation of altitude system 18
15 Example of errors in simulation of attitude system 18
16 Altitude system . 19
17 Attitude system . 20
18 Altitude system with error . 21
19 Attitude system with error . 21
20 MAVs GUI window . 22
21 Showing location of graphs . 23
22 Scroll area with QCheckBoxes . 25
23 Scroll area with legend . 25
24 Connect QMenu . 26
25 Commands QMenu . 26
26 States in QGroupBox . 27
27 Logging figures . 27
28 Area with error labels and button . 28
29 Error dialogs . 29
30 Two MAVs in flight . 30
31 Attitude system . 31
32 Altitude system with gravitional force . 32
33 Altitude system . 33
34 The MAV window . 40
35 Illustration of Failure detection . 41
36 Illustration of Failure detection . 42
37 Illustration of Failure detection . 43

iii

LIST OF FIGURES

iv

1 INTRODUCTION

1 Introduction

An unmanned aerial vehicle (UAV), also known as a drone, is a flying vehicle without a
human pilot aboard. UAVs are becaming popular as a hobby, but also have large usage in
the industry. For example, firefighters can explore the area to find people with a thermal
camera in inaccessible areas [16, 15]. Futhermore UAV can be used in the military industry
mainly as an scout or a stock supplier [5].

A micro aerial vehicle (MAV) is a class of UAV that has a limited size. MAVs can be
used like swarm due to their smaller size. It is inspired by swarm of insects. Swarm of
MAVs can explore area faster and safer.

Figure 1: MAV demonstration

The main goal of this thesis is a design and implementation of a graphical user interface
(GUI) for support experiments with swarms. GUI will allow sending commands to one or
a whole group of MAVs, showing states or drawing telemetry data in one, two or four
graphs. The next goal of this thesis is logging the telemetry data onboard of MAV using
an OpenLog. The OpenLog fulfills the function of as a black box system. It is a device that
can be viewed in terms of its inputs and outputs.

The final goal of this thesis is an automatic failure detection based on analysis of
telemetric data. Failure detection will be implemented by modeled system of MAV. The
modeled system of MAV will run parallely with the real MAV. The implemented failure
detection will compare the differences between the real MAV and the modeled system and
then analyze the data for error detection.

1/43

2 RELATED WORK

2 Related work

There is a lot of research about automatic failure detection of the UAV [4, 14, 19, 10, 11,
12]. It is very important for safe deployment of the systems. Damage can be prevented by
checking the sensors. There is a reseach of fault detection using the model and the IMM-
UKF algorithm [4]. Fault detection and identification algoritms may rely on knowlege
of underlying system dynamics while some eschew this modeling in favor of data-driven
anomaly detection. It considers model-based residual generation and data-driven anomaly
detection for a small, low-cost unmanned aerial vehicle.

The research presented in [18] deals with negative selection algorithm (NSA). It solves
a simple failure detection of an actuator of a helicopter swashplate. A simple model for
the actuator failure is developed and coupled with a helicopter flight dynamics model, and
some trajectories for the algorithm training and simulated validations. The performance of
the algorithm is slightly improved by observing the covariance states of the flight dynamic,
instead of the variables themselves.

Swarm of MAVs is now popular because it is possible to reduce the size of UAV and
also MAV swarm could be better for a deployment. In the research [20] is a section about
complex system for swarm control of Micro Aerial Vehicles stabilized by an onboard visual
relative localization. The main purpose is to verify the possibility of self-stabilization of
multi MAV groups without an external global positioning system. Such an approach enables
the deployment of MAV swarms outside laboratory conditions and it may be considered
an enabling technique for fleet utilization of MAVs in real-world scenarios.

2/43

3 HARDWARE

3 Hardware

This thesis is based on an MAV made by Multi-robot Systems Group (MRS Group)
from Czech Technical University in Prague (CTU).

3.1 Control board

The main unit in the MAV is Control board v.2 (see figure 2) made by Tomáš Báča [2].
The control board contains xMega, ARM, socket for XBee, OpenLog and micro SD card
socket. External modules and sensors can be attached to the control board via UART or
I2c.

(a) Top of the control board (b) Bottom of the control board

Figure 2: Control board v.2

3.1.1 ATxMega

ATxMega 128a3u is an 8-bit AVR microcontroller. ATxMega is mainly used for a com-
munication, controller or trajectory calculations. The microcontroller featuring 128KB self-
programming flash memory, 8KB SRAM, 2048-Byte EEPROM, 4-channel DMA controller
and 8-channel event system [1].

3.1.2 ARM

STM32F415RGT6 is a 32-bit ARM device used for calculating MPC regulator and
Kalman filter. This microcontroller only calculates and sends out data further to micro-
controller ATxMega [28].

3/43

3 HARDWARE

3.1.3 Open Log

The Sparkfun OpenLog (referred as OpenLog) is an open source data logger, which
communicates via a serial port (see figure 3). The OpenLog communicates with the micro-
controller ATxMega. The OpenLog is integrated into the Control board.

Figure 3: SparkFun OpenLog [27]

3.2 Modules

Modules are connected to the control board via UART or I2c. There are two modules
connected at this moment, PX4Flow and a Camera module.

3.2.1 PX4Flow

The MAV is equiped with Pixhawk Px4Flow Smart Camera module with Maxbotix
HRLV-EZ4 (see figure 4). Module is used for measure altitude from 0.3m to 4m. Fur-
thermore, it is used for measuring vertical velocity regardless of the altitude. The module
includes 3-axis gyroscope.

Figure 4: PX4Flow module

4/43

3 HARDWARE

3.2.2 Camera module

The camera module contains the Caspa
TM

camera and the Overvo R© computer made
by Gumstix [13]. The MAV is equiped with the camera module (see figure 5). The camera
module is used for relative visual location of the another MAV by equipped circular pattern.
Circular pattern is shown in figure 6.

Figure 5: Gumstix camera module

Figure 6: Example of circular pattern

3.3 Controllers

The experimental platform uses two types of controllers, PID and MPC. The PID
controller is used to control the altitude using relative ground distance. The ground distance
is got by an ultrasonic range finder. The MPC controller is used for position control. PID
controller is implemented on the xMega and MPC is implemented on the ARM.

3.4 XBee

XBee Pro S2B (see figure 7) is a ZigBee module made by Digi. The main purpose of
the XBee is to procure communication between MAVs and a ground station [6].

5/43

3 HARDWARE

Figure 7: XBee Pro 2SB

3.4.1 Communication via XBee

This thesis was parallely developed with thesis of my colleague [9] whose goal is to
create communication via XBee. The most important commands for this thesis obtain
data through API, such as telemetric data, status of MAV etc.

Commands for telemetry are “getTelemetry (unsigned char kopter, unsigned char type)”,
where “kopter” is an unsigned char used to select the address of MAV and “type” is an
unsigned char belonging to specific telemetry. Return type of command is float. The name
of each varable begins with “TELEMETRIES” so the full name is for example “TELEME-
TRIES.GROUND DISTANCE ESTIMATED” (see table 1 and table 2).

Type Description
ALTITUDE ESTIMATED Estimated distance from ground
ALTITUDE Distance from ground
ELEVATOR SPEED Speed of evelator
AILERON SPEED Speed of aileron
ELEVATOR SPEED ESTIMATED Estimated speed of evelator
AILERON SPEED ESTIMATED Estimated speed of aileron
ELEVATOR POSITION Position of elevator
AILERON POSITION Position of aileron
ALTITUDE CONTROLLER OUTPUT Output of altitude controller

Table 1: API commands for telemetry

Commands for states have the following form “getStatus (unsigned char kopter, un-
signed char type)”, where “kopter” is an unsigned char used to select the address of MAV
and “type” is an unsigned char belonging to specific status. Return type of command is
unsigned char. The name of each varable begins with “COMMANDS” so the example of a
full name is “COMMANDS.CONTROLLERS” (see table 3).

6/43

3 HARDWARE

Type Description
ALTITUDE SPEED Speed of altitude
AILERON CONTROLLER OUTPUT Output of aileron controller
ELEVATOR CONTROLLER OUTPUT Output of elevator controller
ALTITUDE SETPOINT Setpoint of altituder
ELEVATOR POS SETPOINT Setpoint of elevator position
AILERON POS SETPOINT Setpoint of aileron position
ELEVATOR ACC Acceleration of elevator
AILERON ACC Acceleration of aileron
VALID GUMSTIX If MAV see the blob
OUTPUT THROTTLE Output of throttle
OUTPUT ELEVATOR Output of elevator
OUTPUT AILERON Output of aileron
OUTPUT RUDDER Output of rudder
BLOB ELEVATOR Elevator distance from blob
BLOB AILERON Aileron distance from blob
BLOB ALTITUDE Vertical distance from blob
PITCH ANGLE Angle of Pitch
ROLL ANGLE Angle of roll
ELEVATOR ACC ERROR Acceleration error of elevator
ELEVATOR ACC INPUT Acceleration input of elevator
AILERON ACC ERROR Acceleration error of aileron
AILERON ACC INPUT Acceleration input of aileron

Table 2: API commands for telemetry

The MAVs can be controlled by commands from API. There are different commands
for turning the controller on or off, landing etc. Command are “setController (unsigned
char kopter,unsigned char option)”, where “kopter” is an unsigned char used to select
the address of MAV and “option” is an unsigned char of specific command (see table 4).
Commands for landing are “land (unsigned char kopter,unsigned char on)”, where “kopter”
is an unsigned char used to select the address of MAV and “on” is an unsigned char of
specific command for turning landing on (ONOFF.ON) or off (ONOFF.OFF).

Command “setSetpoint (unsigned char kopter,unsigned char type,unsigned char inc-
Type,float value)” is for adjusting setpoints. There are four variables. The first one is an
unsigned char “kopter”, which serves to select the address of MAV, unsigned char “type”
serves to select a specific setpoint, another variable is an unsigned char “incType”, which
serves to select a relative or absolute distance and the last variable is float “value”, which
serves to adjusting the setpoint value. The form of variable “incType” is either “POSI-
TIONS.RELATIV” or “POSITIONS.ABSOLUT” (see table 5).

The last two commands turn on or off gumstix or following preset trajectory points.

7/43

3 HARDWARE

Type Description
CONTROLLERS States of controller which one is on
LANDING MAV states of landing
GUMSTIX On/Off states of gumstix
TRAJECTORY FOLLOW On/Off states of trajectory follow

Table 3: API commands for states

Option Description
CONTROLLERS.OFF Turn off both controllers
CONTROLLERS.VELOCITY Velocity controller is turned on
CONTROLLERS.POSITION Position controller is turned on
CONTROLLERS.BOTH Both controllers are turned on

Table 4: API commands for controllers

Type Description
SETPOINTS.THROTTLE SP Setpoint of throttle
SETPOINTS.ELEVATOR POSITION Setpoint of elevator position
SETPOINTS.AILERON POSITION Setpoint of aileron position
SETPOINTS.ELEVATOR VELOCITY Setpoint of elevator velocity
SETPOINTS.AILERON VELOCITY Setpoint of aileron velocity

Table 5: API commands for the setpoints

Gumstix shows the visibility of the circular pattern on the another MAV. Those com-
mands are “trajectoryFollow (unsigned char kopter,unsigned char on)” and “setGumstix
(unsigned char kopter,unsigned char on)”. An unsigned char “kopter” used to select the
address of MAV and “on” is an unsigned char of specific command for turning land-
ing on (ONOFF.ON) or off (ONOFF.OFF). Trajectory following has one additional com-
mand used for settings trajectory points, which it is “trajectoryAddPoint (unsigned char
kopter,unsigned char index,float time,float elevatorPos,float aileronPos,float throttlePos)”,
where “index” serves as a pointer to array of trajectory points. This array has 10 points.
Variables “elevatorPos”, “aileronPos” and “throttlePos” serve to set all possible setpoints.

8/43

4 LOGGING

4 Logging

Data from MAVs may be logged in two ways. The first way is onboard logging via
SparkFun OpenLog and the second way is logging using the GUI. Onboard logging data
is written into an SD card using the OpenLog. Data can be used for the determination of
errors or for later analysis.

4.1 Onboard logging via SparkFun OpenLog

The Sparkfun OpenLog [27] is an open source data logger, which operates through a
serial port. The OpenLog communicates with the microcontroller ATxMega. The OpenLog
currently supports FAT16 and FAT32 formatting and the size of microSD card up to 64
GB. Basic baud rate is 9200 bps but it can be increased up to 115200 bps (see figure 3).

4.1.1 Commands

Upon powering up into the default ’NewLog’ mode the OpenLog will write to output
three characters “12 < ”. Characters from input will be recorded in the LOG#### .TXT
file, where #### is the file serial number. Upon pressing Ctrl+z three consecutive times
(the different ASCII character can be set in the config.txt file), the OpenLog will exit the
record mode and enter the command mode. Following commands can be entered [26].

4.1.2 Basic commands

• new file.txt - Create a new file in the current directory. The supported file name
length is up to eight characters plus extension length is up to three characters (e.g.
LOG12345.TXT).

• append file.txt - Append the text to the end of file.txt. Serial data is then read
from UART in a stream.

• write file.txt 12 - Write the text to file.txt starting from OFFSET, where OFFSET
is an input parametr of this command. Exiting this state is performed by sending an empty
line.

• rm file.txt - Delete file.txt from the current directory.

• rm -rf myDirectory - Remove myDirectory, all sub-directories and all files within
these directories.

9/43

4 LOGGING

• size file.txt - Display the size of file.txt in bytes.

4.1.3 System settings

System configuration is stored on SD card in config.txt.

• echo on/off -Echo can be allowed by this command. The OpenLog does not repeat
text in the command line, when echo is turned off.

• verbose on/off - This command turns error reporting on and off. The OpenLog
responds only “!”, if verbose is turned off .

• baud - Brings up a system menu to enter a baud rate. Basic baud rate is 9200 bps.
The OpenLog supports any baud rate between 300 bps and 1 Mbps.

• boot up mode - The OpenLog has 3 basic modes. The first mode is “New file
logging”, which creates a new file (LOG####.txt) each time the OpenLog powers up
and starts recording data to the file. The second mode is “Append File Logging”. This
mode creates a file called “SEQLOG.txt” and appends any recieved data to the file. The
last mode is “Command prompt” that uses the command line for creating files or write to
them.

• escape character - Stop recording is posible by the characters, which are contained
in config.txt.

• number of escape characters - This command sets the number of characters that
have to be pressed.

4.1.4 Implementation

There are two implementation options. Logging and reading data or only logging data
to SD card. The second implementation is used for faster data logging.

The first implementation

Config for the OpenLog was adjusted as requied. Echo has been turned off since it is
not needed in the project. Baud rate was set to 115200 bps to be able to log the data. Boot
up mode has been set to “Command prompt” so that it can be read from microSD card.
Escape character has been set to “$$$”.

Separated thread was created for logging so that logging time is constant and indepen-
dent on the rest of the code (logging speed set to 30logs per second). The OpenLog starts
recording data immedietly after turning Control Board on. Default file name is DATA-

10/43

4 LOGGING

LOG.TXT. File name can be changed through communication with XBee.

The second implementation

The difference between the implementations is mainly in the settings of Boot up mode.
Boot up mode has been set to “New File Logging”. This implementation enables only
logging data to the file, which is generated automaticaly to the SD card.

4.2 Telemetry logging using the GUI

Telemetry can be logged by GUI. Logging telemetry data has the option to change
the filename or switch it on or off (see figure 8). Logging can be switched by using the
checkbox. The first record on the line is always a time from ground station. Telemetry
data are logged in legible form due to the possibility of its re-ploting and analyzing. Each
MAV window has its own log file and telemetry data are logged independently of the other
MAV windows. More about implementation of logging telemetry is in the subsection 6.8.

Figure 8: Logging options in GUI

11/43

5 FAILURE DETECTION

5 Failure detection

The main goal of the failure detection is to detect errors caused by measurement or
controllers. Errors are checked when regulators are enabled. Failure detection was solved
using a modeled system of MAV, which runs independently on the GUI. The modeled
system of MAV first initializes all the necessary variables for futher calculations. Failure
detection waits until the regulator is turned on. Identification of the MAV model was not
a part of this thesis. The simulations (see subsection 5.2 and 5.5) were created by using
the C++ code with GUI, which was created in this thesis.

5.1 Model of MAV

Discrete formulation of the dynamical system is used in this thesis. State space formu-
lating is written in a discrete form with a constant sampling rate 1/∆t.

5.1.1 Altitude model

Altitude model was identified in [8]. The following form describes a discrete time-
invariant system with a main matrix A and input matrix B

q[t+1] = Aq[t] + Bu[t]. (1)

There is a state vector qz = (z, ż, z̈, z̈u)T , where z represents altitude position, ż rep-
resents altitude speed, z̈ represents altitude acceleration and z̈u represents altittude ac-
celeration with gravitation acceleration. An input is uz = (UD, 1)T , where UD represents
collective thrust of a propeller. Altitude dynamics model includes Earth’s gravitation pull
so there is a need for an additional input to be added to the system. The second input
value is always equal to 1 due to gravitation pull. Altitude LTI system for the state vector
qz and the input uz is defined as

Az =


1 ∆t 0 0

0 1 ∆t 0

0 0 0 1

0 0 0 P1

 ,Bz =


0 0

0 0

0 −g
P2 0

 , (2)

where g ≈ 9.8ms−2 is a gravity acceleration, ∆t is the sampling period and P1 and P2 are
the parameters of the first order system UD → z̈.

12/43

5 FAILURE DETECTION

Parameters for the altitude system are used as

g = 9.8,∆t = 0.0114, P1 = 0.9658, P2 = 0.0023. (3)

Matrix Az and Matrix Bz are used as

Az =


1 0.0114 0 0

0 1 0.0114 0

0 0 0 1

0 0 0 0.9658

 ,Bz =


0 0

0 0

0 −9.8

0.0023 0

 . (4)

These matrices are used for state calculations of the altitude modeled system.

5.1.2 Attitude model

Attitude model was identified in [2]. The following form describes a discrete time-
invariant system with a main matrix A and input matrix B.

q[t+1] = Aq[t] + Bu[t]. (5)

There are state vectors qx = (x, ẋ, ẍ, ẍu, ẍd)
T and qy = (y, ẏ, ÿ, ÿu, ÿd)

T , where x, y rep-
resent attitude position, ẋ, ẏ represent attitude speed, ẍ, ÿ represents attitude acceleration,
ẍu, ÿu represents attitude contribution in acceleration from the control input and ẍd, ÿd
represent attitude disturbance in acceleration. An input is ux = ψD and uy = θD, where
ψD represent desired roll angle of the MAV and θD represent desired pitch angle of the
MAV. Attitude LTI system for the state vectors qx,qy and the inputs ux,uy is defined as

Ax,y =


1 ∆t 0 0 0

0 1 ∆t 0 0

0 0 0 1 1

0 0 0 P3 0

0 0 0 0 1

 ,Bx,y =


0

0

0

P4

0

 , (6)

where ∆t is the sampling period and P3 and P4 are parameters of the first order transfer
from a desired angle to the actual angle of attitude.

13/43

5 FAILURE DETECTION

Parameters for the attitude system are used as

∆t = 0.0114, P3 = 0.9796, P4 = 5.13× 10−5. (7)

Matrix Ax,y and Matrix Bx,y are used as

Ax,y =


1 0.0114t 0 0 0

0 1 0.0114 0 0

0 0 0 1 1

0 0 0 0.9796 0

0 0 0 0 1

 ,Bx,y =


0

0

0

5.13× 10−5

0

 . (8)

These matrices are used for state calculations of the attitude modeled system.

5.2 Simulation of a real MAV

A Simulation of real MAV is performed under C++ code with GUI. A model of the
real MAV (see section 5.1) is used for the simulation. The modeled system of MAV is
complemented by controllers, which are implemented on the real MAV. The altitude mod-
eled system contains PID controller and the attitude modeled system cointains MPC. The
modeled system is simulated in an ideal world conditions and therefore it is necessary to
distort the output signal (see in section 5.2.1).

5.2.1 Signal noise

The MAV sensors emit a noise, which needs to be simulated. The assumption is that
the noise is drawn from a normal distribution N (µ, σ). Deviation of sensors was calculated
by

σ =

√√√√ 1

n

n∑
i=1

[xi − pi], (9)

where n is the number of data values, the ~x is the vector of position values and the ~p is
the vector of polynomial values fitted on the ~x. Normal distribution for altitude position
is N (0, 0.01532) and for attitude speed is N (0, 0.08). Values from the Normal distribution
are added to true values of altitudie position and attitude speed from the modeled system
simulation.

14/43

5 FAILURE DETECTION

Figure 9: Example of a noise for Normal distribution N(0,0.08)

5.2.2 Examples of MAV simulation

The setpoint of the altitude modeled system was set to 1 meter from the initial value.
Initial value 0 is the position where the system was located at startup. Noise signal is not
seen because it is very small (see fig. 10).

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

time [s]

po
si

tio
n

[m
]

altitude position

Figure 10: Example of the altitude modeled system

Setpoint of the attitude modeled system was set to 1 meter from the initial value. Noise
signal is visible on the attitude speed (see fig. 11a).

15/43

5 FAILURE DETECTION

(a) Attitude speed

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

time [s]

po
si

tio
n

[m
]

attitude position

(b) Attitude position

Figure 11: Example of the attitude modeled system

5.3 Failure detection system

An MAV model for Failure detection system is the same as for the simulations in section
5.2. The modeled system used for the failure detection does not contain any controllers. The
modeled system is used to estimate the behavior of a real MAV. Therefore, the modeled
system receives all states from a real MAV via XBee communication.

5.3.1 Implementation of Failure detection

Failure detection is implemented as a thread in C++ code with GUI. The Failure detec-
tion thread begins with inicialization variables and matrices, which are used for calculating
states of modeled system. Each real MAV is running his own Failure detection thread due
to the speed of detection. The Failure detection thread is checking the states of the con-
trollers after initialization of all variables. The Failure detection systems starts when the
MAV controllers are turned on. The PID controller and the MPC are checked separately
because altitude and attitude Failure detection systems are implemented separately.

16/43

5 FAILURE DETECTION

When controllers are turned on, the Failure detection systems receives initial states
for system from a real MAV and the Failure detection systems starts to predict behavior
of a real MAV. The Failure detection systems obtains only control action and states of
the Failure detection systems calculated by altitude and attitude systems. The Failure
detection systems receives all states from a real MAV every two seconds in order to level
states. When regulators are turned off, the Failure detection thread is turned off too. The
Failure detection systems will wait until the controller is turned on. For the graphical
display of errors of MAV see subsection 6.9.

5.4 Data analysis from failure detection modeled system

Data is analyzed in each cycle of the failure detection thread. Data is stored in an
array. The array has a size of three hundred entries. The array moves dynamically and
always contains the last three hundred entries. The array contains the absolute value of
the difference between the position of real MAV and the Failure detection systems. Sum
of all data, peak to peak and median from the array were chosen for data analysis of the
array (for result see figure 12 and figure 13).

Figure 12: Example of errors in simulation of altitude system with artificial error

Figure 13: Example of errors in simulation of attitude system with artificial error

17/43

5 FAILURE DETECTION

Artificial error was included in figure 12 and figure 13 in first four second. From figures
is possible to establish a threshold, which was experimentally determined to 70% of the
maximum value. Median seen in the figures is not suitable for this analysis of errors. The
sum of all the data reveals errors but it is not very reliable as seen on figure 13. Peak to
peak was chosen as the best option for this case. Peak to peak was able to detect the error
in this simulation reliably.

Figure 14 and figure 15 were created without artificial error. It is possible to see that
values of the peak to peak and the sum of all data are smaller. The failure detection did
not found the error with the selected threshold.

Figure 14: Example of errors in simulation of altitude system

Figure 15: Example of errors in simulation of attitude system

18/43

5 FAILURE DETECTION

5.5 Simulations

Simulations were performed under C++ code with GUI. Simulation system of MAV and
the Failure detection systems ran on their own threads. All data from systems was logged
during simulations using the C++ code with GUI. Data was retrospectively analyzed and
results were recorded. Simulations were performed with previous systems.

5.5.1 Systems of MAV simulation and failure detection

The first experiment based on the control action was designed to predict a behavior of
MAV simulation through Failure detection systems without regulators.

In the figures (figure 16 and figure 17) is an example of prediction of the Failure de-
tection systems behavior in MAV simulation. In figure 17b is an example of inaccuracy
in comparison with the simulation model of real MAV. Behavior prediction of the MAV
simulation from the Failure detection systems is shown in the figures 16 and 17. Inaccuracy
in the comparison states of MAV simulation and the Failure detection system is shown in
figure 17b.

(a) Altitude position

(b) Altitude speed

Figure 16: Altitude system

19/43

5 FAILURE DETECTION

(a) Attitude position

(b) Attitude speed

Figure 17: Attitude system

5.5.2 Artificially created error

The second simulation was designed to verify the functionality of the Failure detection.
Artificial error was created by adding 0.02 m to the measured positions of both systems.
Value of error was experimentally chosen to cause explicit errors to both systems.

The differences between positions of the Failure detection systems and MAV simulation
is seen in the figure 18 and the figure 19. The Failure detection systems therefore behaves
as desired in this thesis.

20/43

5 FAILURE DETECTION

(a) Altitude position

(b) Altitude speed

Figure 18: Altitude system with error

(a) Attitude position

(b) Attitude speed

Figure 19: Attitude system with error

21/43

6 GRAPHICAL USER INTERFACE

6 Graphical user interface

This section explains graphical user interface (GUI), the GUI elements and functional-
ity. The GUI is developed under the QT framework. The main goal of the GUI is facilitates
experiments with a swarm of simultaneously flying MAVs. The GUI is used to control the
MAVs and display their telemetry data in a realtime. The Realtime data is obtained by
communication via XBee. The interface could send commands for a particular MAVs or
entire group of MAVs. The interface saves and subsequently analyses telemetric data and
detect failures of MAV subsystems. Detected errors are shown in the interface.

6.1 QT framework

QT is a cross-platform application and UI framework for developers using C++ or
QML. QT and the supporting tools are developed as an open source project. QT can be
used under open source license (GPL v3 and LGPL v2.1). QT Creator, which supports the
cross-platform QT IDE, is used for the development in QT [3]. Real-time elements were
developed in QT Framework 4.8 and therefore it is necessary to have version 4.8 or newer.

6.2 MAVs GUI window

The main aim of the MAVs GUI window (see figure 20) is to start communication
via XBee that runs in own thread and chooses how many graphs in the next window are
required.

Figure 20: MAVs GUI window

22/43

6 GRAPHICAL USER INTERFACE

6.2.1 Communication thread

The communication thread is used to receive packets from XBee. Before running the
thread, it is necessary to write the COM port number, where XBee is connected and
click Connect button. Each ground station can connect XBee to another COM port. After
entering the COM port GUI starts a new communication thread, which communicates with
API. Communication thread only receives the data for API, which handles the data for
future use.

6.2.2 The possibility of setting a number of graphs

After the startup of the communication thread the buttons for setting a number of
graphs become visible. The MAVs GUI window may now open new separated windows
with the specific MAV window.

The MAVs GUI window allows to choose the number of graphs in the MAV window.
The other settings are not dependent on the number of graphs. Four options can be selected
from the MAVs GUI window : one graph is outstretched over the entire area of graphs, two
graphs are arranged either horizontally or vertically and four graphs are arranged in a
square (see figure 21).

(a) One graph (b) Two vertical graphs

(c) Two horizontal graphs (d) Four graphs

Figure 21: Showing location of graphs

23/43

6 GRAPHICAL USER INTERFACE

6.3 QCustomPlot

QCustomPlot is a library written in C++ programming language [17]. It is a QWidget,
which is used for plotting and data visualization. This library focuses at plotting graphs and
charts. The QCustomPlot offers high performance for real-time visualization applications.
Source code and Software are licensed under the GNU General Public License.

6.4 Graphs

The library QCustomPlot is used for plotting graphs. The QCustomPlot is used for co-
operation with QT framework in QT Creator. The QCustomPlot can be linked to QWidget.
QWidget is used for working with the graphical elements. Real-time graphs are supported
by the QCustomPlot, which is needed in MAVs GUI window.

Telemetry data is taken from the API and plotted to the graphs. Graphs are refreshed
with the highest priority rate dependent on a workload of the ground station. Telemetry
data is selected in a scroll area where are the QCheckBoxes (see subsection 6.4.1). Telemetry
data is plotted only if a specific QCheckBox is checked. A legend was added for better
orientation in graphs.

Range of Y-axis depends on the maximal and minimal values of the telemetry data that
is curently plotted. The X-axis contains enrollment of time taken by the ground station.

6.4.1 QCheckBoxes for Graphs

A QCheckBoxes are placed in a scroll area to save space in the interface (see figure 22).
Each QCheckBox allows toggling a single telemetry data for plotting. A QComboBox is
there for ability to switch between the graphs. Each graph in QComboBox has a own set
of QCheckBoxes. The QComboBox is not visible if MAV window contains only one graph.
The QComboBox contains a number of graph if MAV window has two or four graphs.

6.4.2 Graph legend

The legend is placed in a scroll area to save space in the interface. The legend was
added there for a better orientation in the graph. It contains a label with color and name
for each signal that can be plotted in any graph (see figure 23).

24/43

6 GRAPHICAL USER INTERFACE

(a) MAV window with one
graph

(b) MAV window with two or
more graphs

Figure 22: Scroll area with QCheckBoxes

Figure 23: Scroll area with legend

6.5 Connecting GUI with MAV

The MAV is connected to MAV window over a QMenu (see figure 24) every time the
MAV window is opened. The address of the XBee is loaded by pressing a button, which
is named after the XBee. Following actions are performed after pressing any button. At
first, GUI loads the address of the XBee and sends commands that enable acquistition the
specific telemetry data for the failure detection. Finally, the GUI starts the failure detection
thread (more about failure detection thread is in subsection 6.9) and sets the address of
the XBee for the failure detection thread.

25/43

6 GRAPHICAL USER INTERFACE

Figure 24: Connect QMenu

6.6 Commands for control the MAV

Commands are included in QMenu (see figure 25), where commands can be selected and
then sent to the MAV. The first command is used to land the MAV. Additional commands
are used to enable or disable controllers or to set points for altitude, aileron or elevator.
Trajectory command is there only to turn on or off following preset trajectory points.
Gumstix command enables or disables acquistition of telemetry data that shows whether
circular pattern on the another MAV is registered. Group commanding is the QCheckBox
which determines if commands are sent to the specific MAV or to all MAVs.

Figure 25: Commands QMenu

6.7 States of MAV

The GUI can observe four states from MAV (see figure 26). Controller status shows
which controller is turned on. Landing status indicates whether the MAV recieved a com-
mand to land. Gumstix status determines if camera module sees a circular pattern or not.
Trajectory follow status determines if following preset trajectory points is turned on or off.
States are refreshed with the highest priority rate dependent on a workload of the ground
station.

26/43

6 GRAPHICAL USER INTERFACE

Figure 26: States in QGroupBox

6.8 Logging telemetry

Logging telemetry starts every time the MAV window is opened. Filename depends on
the date and the time of startup of the MAV window. The MAV window gets the time
from the ground station during initialization of all necessary variables. The GUI is logging
telemetry data recieved via API every time it draws another point to the graph. Logging
telemetry is running on the same thread as graphs. The first record on the line is always
a time from ground station, then follows telemetry data according the graph legend.

Logging telemetry is switched on during initialization. For turning telemetry data on
and off is used QCheckBox in LogMenu (see figure 27a). Logging telemetry can be turned
on and off during runtime. The file name of log can be also changed in logging menu in
following dialog window (see figure 27b). Telemetry will start logging to the new file if
filename was confirmed.

(a) Logging QMenu (b) QDialog of change file name

Figure 27: Logging figures

27/43

6 GRAPHICAL USER INTERFACE

6.9 Failure detection

Failure detection is designed to find and alert errors. Failure detection is implemented as
a thread, which is started after XBee address is selected. The Failure detection thread begins
with inicialization of variables and matrices for model. Variables and matrices are used for
calculating the states of modeled system. Matrices and work with them is implemented by
Eigen library [7]. Each MAV window has its own Failure detection thread.

Errors are written in array where 1 represents an error and 0 represents no error. The
error array is checked together with the MAV states. Each position of the array represents
one controller. Each array position is checked separately in order to determine the origin
of the error. More about failure detection is in section 5.

6.9.1 Representation of failure detection

Error area contains the two QLabels and the QButton (see figure 28). Error area is
contained in the MAV window. Text of the first QLabel is allways “Error status:”. The
errors are shown in the second QLabel. Text of the second QLabel is showing error text.
When an error is detected, the GUI will change color of the second QLabel to red and
the text of the second QLabel is changed to “ERROR” (see figure 28b). When no errors
are detected, the GUI will change color of the second QLabel to green and the text of the
second QLabel is changed to “No errors” (see figure 28a).

(a) No errors detected

(b) Errors detected

Figure 28: Area with error labels and button

The QButton opens a QDialog. The QDialog contains a QTextArea and the QButton
(see figure 29). The QTextArea contains text dependent on error array. The QButton is
used to end the QDialog. When the array does not contain any errors, QDialog will write to
the QTextArea “No errors” (figure 29a). In case of error ocurance, name of failed controller

28/43

6 GRAPHICAL USER INTERFACE

is written in the QTextArea (figure 29b).

(a) Error dialog window when er-
ror is not detected

(b) Error dialog window when er-
ror is detected

Figure 29: Error dialogs

29/43

7 EXPERIMENTS

7 Experiments

Experiments were performed to determine functionality of application and to detect
possible errors.

7.1 Experiment with two MAVs

Experiment with two MAVs was designed to verify the functionality of the GUI. The
GUI was able to draw graphs for both MAVs at the same time. The GUI was also able to
show states of MAVs. The GUI was used as a support for the experiment with the blob
detection. Display status of gumstix (the first MAV with the camera module sees a circular
pattern on the second MAV) was required from the GUI.

Figure 30: Two MAVs in flight

7.2 Failure detection on a real MAV

This experiment was designed to verify the functionality of the Failure detection on a
real MAV.

7.2.1 Attitude system

Attitude Failure detection system behaved satisfactorily while following the position of
real MAV (see figure 31). Behavior of the altitude Failure detection system and the real
MAV is presented in figure 31a. Altitude Failure detection system behaved satisfactorily

30/43

7 EXPERIMENTS

while following the attitude position of real MAV. There is an error in figure 31 starting at
11 seconds. Threshold was set experimentally by measured data. The error signal is shown
in figure 31b.

(a) Position of the attitude system

(b) Error signal of attitude system

Figure 31: Attitude system

7.2.2 Altitude system

Altitude of Failure detection system was less precise. Altitude of Failure detection system
with gravitational force (see section 5.1.1) was not identical with real MAV altitude. Control
action from MAV is changed based on gravitational pull, loss of battery power, value of
RC receiver etc. Futhermore, Control action depends on external disturbance (e.g. wind).
Control action from MAV was small to maintain the correct position of Failure detection
system (see figure 32).

The gravitational pull was subsequently removed from altitude Failure detection system.
States, which were included into the altitude Failure detection system had to be modified
too. The gravitational acceleration was removed from the states. Control action from MAV
has also been modified. Integral component was subtracted from the control action from
MAV. Integral component compensates control action according to the situation such as
gravitational pull, loss of battery power etc.

31/43

7 EXPERIMENTS

Figure 32: Altitude system with gravitional force

New altitude Failure detection system is defined as

qz = (z, ż, z̈)T ,uz = (UD)T ,Az =

1 0.0114 0

0 1 0.0114

0 0 0.9658

 ,Bz =

 0

0

0.0023

 , (10)

where z represents altitude position, ż represents altitude speed and z̈ represents altitude
acceleration. Input UD represents collective thrust of a propeller.

Altitude of Failure detection system was modified and the result is presented in the
figure 33. Behavior of the system and the real MAV is shown in the figure 33a. Altitude
Failure detection system behaved satisfactorily while following the position of the real
MAV. In the figure 33 is presented caused error that starts at 10 second. Threshold was
set experimentally by measured data. The error signal can be seen in the figure 33b.

7.3 Summary

Both systems of the Failure detection system are able to detect errors caused by an
unexpected behavior of MAV. Altitude Failure detection system with gravitional pull does
not behave in the real-world conditions according to MAV. Altitude Failure detection sys-
tem was modified by removing the gravitional pull and changing control action from the
MAV. New altitude Failure detection system is able to predict a behavior of a MAV reliably
after the adjustments.

32/43

7 EXPERIMENTS

(a) Altitude system without gravitional force

(b) Error signal of altitude system

Figure 33: Altitude system

33/43

8 CONCLUSION

8 Conclusion

This thesis was aimed to design, develop and test GUI and failure detection which
was made for support experiments with a swarm of simultaneously flying MAVs. I have
designed and implemented GUI which supports experiments with the real MAVs. Also I
have created failure detection which works with the real MAV. Failure detection is able to
detect errors caused by controllers in realtime.

The GUI was designed and implemented by using the QT framework and QT Creator.
The GUI can open more windows at the same time. Each window supports one the MAV.
The GUI can display realtime telemetry and states of the MAV. The GUI can also send
commands to control the MAV. The GUI contains a thread for the Failure detection.

Experiments with simulated model of the MAV demonstrate the functionality of the
Failure detection. Simulation of the Failure detection system is slightly delayed but it
detects errors reliably.

The first real experiment with two MAVs represents the functionality of the work with
more MAVs at the same time. The other experiment with MAV is targeted at failure
detection in the real world conditions. Experiment showed that the Failure detection sys-
tem responds to the MAV. Errors in the real world conditions are detected reliably after
adjusting the threshold experimentally by measured data.

During the work on the thesis I have learnt that working with a real hardware requires
a lot of time. I have also learnt that simulations and experiments are very important
in any new development because they can reveal some hidden faults and illustrate the
functionality of the work. I have also learnt that theoretical model is different from a real
word dynamic system.

The GUI which was created in this thesis is a useful tool for experiments with MAVs.
The GUI can draw graphs from telemetry data, which is received from the MAV. The GUI
can also show states of MAVs or sending commands to one MAV. The failure detection
is detecting errors caused by controllers on the MAV. The mentioned features of my work
could be useful in following applications. Firstly, created GUI can be used for performed
experiments with MAV formations. The realtime failure detection features are very helpful
[25, 23, 22]. Secondly, the GUI was implemented so that it supports any number of MAVs.
This can be useful for experiments with MAV swarms [24, 21]. Futhermore GUI can show
telemetry data for each individual member of the swarm.

34/43

9 BIBLIOGRAPHY

9 Bibliography

[1] Atmel. Atxmega 128a3u - http://www.atmel.com/devices/atxmega128a3u.aspx, Oc-
tober 2014.

[2] Tomáš Báča. Model predictive control of micro aerial vehicle using onboard micro-
controller. Master’s thesis, Czech Technical University.

[3] The QT company. https://www.qt.io/qt-framework/, 2015.

[4] L. Cork and R. Walker. Sensor Fault Detection for UAVs using a Nonlinear Dynamic
Model and the IMM-UKF Algorithm. Information, Decision and Control - IDC, 2007.

[5] Breaking defense. http://breakingdefense.com/2015/03/teaching-drones-how-to-see-
fire-scout-kestrel/, March 2015.

[6] Digi. http://www.digi.com/, 2015.

[7] Eigen. http://eigen.tuxfamily.org/, January 2015.

[8] Václav Endrych. Control and stabilization of an unmanned helicopter following a
dynamic trajectory. Master’s thesis, Czech Technical University.

[9] Jirka Fiedler. Synchronized control of group of helicopters using direct communication.
Bachelor’s thesis, Czech Technical University.

[10] Gerardo R. Flores-Colunga, H. Aguilar-Sierra, R. Lozano, and S. Salazar. Faulr es-
timation and control for a quad-rotor mav using a polynomial observer. part i: Fault
detection. In First Iberian Robotics Conference: Advances in Robotics, 2013.

[11] Michael Frangenberg, Johannes Stephan, and Walter Fichter. Fast actuator fault
detection and reconfiguration for multicopters. In AIAA Guidance, Navigation, and
Control Conference, 2013.

[12] P. Freeman, R. Pandita, N. Srivastava, and G. J. Balas. Model-Based and Data-
Driven Fault Detection Performance for a Small UAV. Mechatronics, IEEE/ASME
Transactions, Volume 18, Issue 4, May 2013.

[13] Gumstix. https://www.gumstix.com/, 2015.

[14] G. Heredia, A. Ollero, M. Bejar, and R. Mahtani. Sensor and actuator fault detection
in small autonomous helicopters. Mechatronics, Volume 18, Issue 2, March 2008.

[15] Vice Media LLC. http://motherboard.vice.com/blog/turns-out-drones-make-great-
firefighters, 2015.

[16] project of CentMesh. https://sites.google.com/a/ncsu.edu/firefighting-drone-
challenge/, September 2014.

35/43

9 BIBLIOGRAPHY

[17] Emanuel Eichhammer QCustomPlot. http://www.qcustomplot.com/, April 2015.

[18] Thomas Rakotomamonjy and Thomas Rakotomamonjy. A negative selection algo-
rithm applied to helicopter actuator fault detection. In Control, Decision and Infor-
mation Technologies (CoDIT), 2014.

[19] S. Sanchez, M. Perhinschi, and H. Moncayo. In-flight actuator failure detection and
identification for a reduced size uav using the artificial immune system approach. In
AIAA Guidance, Navigation, and Control Conference, 2009.

[20] M. Saska, J. Chudoba, L. Přeučil, J. Thomas, and G. Loianno. Autonomous deploy-
ment of swarms of micro-aerial vehicles in cooperative surveillance. In International
Conference on Unmanned Aircraft Systems, 2014.

[21] M. Saska, J. Chudoba, L. Preucil, J. Thomas, G. Loianno, A. Tresnak, V. Vonasek,
and V. Kumar. Autonomous Deployment of Swarms of Micro-Aerial Vehicles in Coop-
erative Surveillance. In Proceedings of 2014 International Conference on Unmanned
Aircraft Systems (ICUAS), volume 1, pages 584–595, Danvers, 2014. IEEE Computer
society.

[22] M. Saska, Z. Kasl, and L. Preucil. Motion Planning and Control of Formations of
Micro Aerial Vehicles. In Proceedings of The 19th World Congress of the International
Federation of Automatic Control, pages 1228–1233, Pretoria, 2014. IFAC.

[23] M. Saska, T. Krajnik, V. Vonasek, Z. Kasl, V. Spurny, and L. Preucil. Fault-Tolerant
Formation Driving Mechanism Designed for Heterogeneous MAVs-UGVs Groups.
Journal of Intelligent and Robotic Systems, 73(1-4):603–622, January 2014.

[24] M. Saska, J. Vakula, and L. Preucil. Swarms of Micro Aerial Vehicles Stabilized Under
a Visual Relative Localization. In ICRA2014: Proceedings of 2014 IEEE International
Conference on Robotics and Automation, pages 3570–3575, Piscataway, 2014. IEEE.

[25] M. Saska, V. Vonasek, T. Krajnik, and L. Preucil. Coordination and Naviga-
tion of Heterogeneous MAV–UGV Formations Localized by a ‘hawk-
eye’-like Approach Under a Model Predictive Control Scheme. International
Journal of Robotics Research, 33(10):1393–1412, September 2014.

[26] SparkFun. https://github.com/sparkfun/openlog/wiki/command-set, August 2014.

[27] SparkFun. Openlog - https://www.sparkfun.com/products/9530, 2015.

[28] STMicroelectronics.

36/43

APPENDIX A CD CONTENT

Appendix A CD Content

In Table 6 are listed names of all root directories on CD.

Directory name Description
thesis Bachelor’s thesis in pdf format.
thesis sources latex source codes
GUI C++ source codes
Photos Photos of experiments

Table 6: CD Content

37/43

APPENDIX B LIST OF ABBREVIATIONS

Appendix B List of abbreviations

In Table 7 are listed abbreviations used in this thesis.

Abbreviation Meaning
UAV unmanned aerial vehicle
MAV micro aerial vehicle
GUI graphical user interface
API application programming interface
UART universal asynchronous receiver-transmitter
MPC model predictive controller
LTI linear time invariant

Table 7: Lists of abbreviations

38/43

APPENDIX B LIST OF ABBREVIATIONS

39/43

APPENDIX C THE MAV WINDOW

Appendix C The MAV window

Figure 34: The MAV window

40/43

APPENDIX D THE FAILURE DETECTION

Appendix D The Failure detection

Figure 35: Illustration of Failure detection

41/43

APPENDIX D THE FAILURE DETECTION

Figure 36: Illustration of Failure detection

42/43

APPENDIX D THE FAILURE DETECTION

Figure 37: Illustration of Failure detection

43/43

	List of Figures
	Introduction
	Related work
	Hardware
	Control board
	ATxMega
	ARM
	Open Log

	Modules
	PX4Flow
	Camera module

	Controllers
	XBee
	Communication via XBee

	Logging
	Onboard logging via SparkFun OpenLog
	Commands
	Basic commands
	System settings
	Implementation

	Telemetry logging using the GUI

	Failure detection
	Model of MAV
	Altitude model
	Attitude model

	Simulation of a real MAV
	Signal noise
	Examples of MAV simulation

	Failure detection system
	Implementation of Failure detection

	Data analysis from failure detection modeled system
	Simulations
	Systems of MAV simulation and failure detection
	Artificially created error

	Graphical user interface
	QT framework
	MAVs GUI window
	Communication thread
	The possibility of setting a number of graphs

	QCustomPlot
	Graphs
	QCheckBoxes for Graphs
	Graph legend

	Connecting GUI with MAV
	Commands for control the MAV
	States of MAV
	Logging telemetry
	Failure detection
	Representation of failure detection

	Experiments
	Experiment with two MAVs
	Failure detection on a real MAV
	Attitude system
	Altitude system

	Summary

	Conclusion
	Bibliography
	Appendix CD Content
	Appendix List of abbreviations
	Appendix The MAV window
	Appendix The Failure detection

